Resultados 1 al 1 de 1

Tema: Learn Apache Spark And Scala From Scratch

  1. #1
    Fecha de ingreso
    octubre 2022
    Mensajes
    2.972
    Agradecido: 113

    Predeterminado Learn Apache Spark And Scala From Scratch


    723f9536973e7c37373f14c4b7c44c61 - Learn Apache Spark And Scala From  Scratch


    Published 12/2022
    MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
    Language: English | Size: 640.96 MB | Duration: 1h 55m

    A Basic to Advanced Overview for processing Big Data with Spark

    What you'll learn
    OOPS and Functional Programming in Scala
    Apache Spark Framework
    Advanced Spark Programming
    Integrating Spark with Kafka
    Spark MLib - Machine Learning
    Spark Streaming, SparkSQL, Spark GraphX etc.
    Requirements
    Intermediate programming experience in Python or Scala
    Beginner experience with the DataFrame API
    Basic understanding of Machine Learning concepts
    Description
    Apache Spark is a cluster computing platform designed to be fast and general-purpose. On the speed side, Spark extends the popular MapReduce model to efficiently support more types of computations, including interactive queries and stream processing. Speed is important in processing large datasets, as it means the difference between exploring data interactively and waiting minutes or hours. One of the main features Spark offers for speed is the ability to run computations in memory, but the system is also more efficient than MapReduce for complex applications running on disk. On the generality side, Spark is designed to cover a wide range of workloads that previously required separate distributed systems, including batch applications, iterative algorithms, interactive queries, and streaming. By supporting these workloads in the same engine, Spark makes it easy and inexpensive to combine different processing types, which is often necessary in production data analysis pipelines. In addition, it reduces the management burden of maintaining separate tools. Spark is designed to be highly accessible, offering simple APIs in Python, Java, Scala, and SQL, and rich built-in libraries. It also integrates closely with other Big Data tools. In particular, Spark can run in Hadoop clusters and access any Hadoop data source, including Cassandra.
    Overview
    Section 1: Module 1
    Lecture 1 Functions and Procedures in Scala
    Lecture 2 Call By Name Parameter
    Lecture 3 Functions with Named Arguments
    Lecture 4 Functions with Variable Arguments
    Lecture 5 Recursion Functions
    Lecture 6 Default Parameters for a Function
    Lecture 7 Nested Functions
    Lecture 8 Anonymous Functions
    Lecture 9 Strings in Scala
    Lecture 10 Arrays in Scala
    Lecture 11 Scala Collections
    Lecture 12 Lists in Scala
    Lecture 13 Sets in Scala
    Lecture 14 Maps in Scala
    Lecture 15 Tuples in Scala
    Lecture 16 Options in Scala
    Lecture 17 Exception Handling in Scala
    Lecture 18 Pattern Matching
    Lecture 19 Scala Traits
    Lecture 20 Scala Files Input Output
    Lecture 21 Extractors in Scala
    Professionals aspiring to learn the basics of Big Data Analytics,Spark Developer,Analytics Professionals,ETL Developers

    76dcc70a1ac96cdddcab1fde639b2732 - Learn Apache Spark And Scala From  Scratch

    Download link

    rapidgator.net:
    Contenido oculto. Ha de estar registrado, y pulsar el botón "Gracias" para visualizar sus enlaces de descarga.
    Si trás registrarse todavía no visualiza el botón de "gracias", pulse la tecla F5, para refrescar la página.


    :

    nitroflare.com:
    Contenido oculto. Ha de estar registrado, y pulsar el botón "Gracias" para visualizar sus enlaces de descarga.
    Si trás registrarse todavía no visualiza el botón de "gracias", pulse la tecla F5, para refrescar la página.


    1dl.net:
    Contenido oculto. Ha de estar registrado, y pulsar el botón "Gracias" para visualizar sus enlaces de descarga.
    Si trás registrarse todavía no visualiza el botón de "gracias", pulse la tecla F5, para refrescar la página.

  2. El siguiente Usuario agradeció a mitsumi1 este mensaje:

    ocastillo (25 enero 2023)

Etiquetas para este tema

Permisos de publicación